Point Counting on Hyperelliptic Curves
Kedlaya’s Algorithm

Fré Vercauteren
Katholieke Universiteit Leuven

29-30 August 2005
Cohomology

Algebraic de Rham Cohomology
Monsky-Washnitzer Cohomology

Example of Punctured Affine Line

Kedlaya’s Algorithm for $p > 2$
Let A be a ring, e.g. the coordinate ring of a curve.

The module of Kähler differentials $D^1(A)$ is generated over A by symbols da with $a \in A$ with rules:

$$d(a + b) = da + db$$
$$d(a \cdot b) = adb + bda$$

Elements of dA are called exact.
Algebraic de Rham Cohomology

- \overline{X} smooth affine curve over field \mathbb{K} with coordinate ring

$$A = \mathbb{K}[x, y]/(f(x, y))$$

- Since $f(x, y) = 0$ get $(\frac{\partial f}{\partial x} \, dx + \frac{\partial f}{\partial y} \, dy) = 0$, so

$$D^1(A) = \frac{(A \, dx + A \, dy)}{(A(\frac{\partial f}{\partial x} \, dx + \frac{\partial f}{\partial y} \, dy))}$$

- First algebraic de Rham cohomology group is

$$H_{DR}^1(A) = \frac{D^1(A)}{dA}$$
Monsky-Washnitzer Cohomology

- \overline{X} smooth affine curve over field \mathbb{F}_q with coordinate ring $\overline{A} = \mathbb{F}_q[x, y]/(f(x, y))$

- Let f be arbitrary lift to \mathbb{Z}_q and let $A = \mathbb{Z}_q[x, y]/(f)$

- Would like to lift the Frobenius endomorphism to A, but in general this is not possible! (cfr. Satoh)

- Working with p-adic completion A^∞ of A does admit lift, but the de Rham cohomology of A^∞ mostly larger than of A.

- For affine line: $\sum p^j x^{p^j-1} dx = d(\sum x^{p^j})$, but $\sum x^{p^j} \notin A^\infty$.

- Problem: series $\sum p^j x^{p^j-1}$ does not converge fast enough for its integral to converge as well.
Dagger rings

- Dagger ring A^\dagger of $A := \mathbb{Z}_q[x, y]/(f)$ is
 $$A^\dagger := \mathbb{Z}_q\langle x, y \rangle^\dagger/(f),$$

- $\mathbb{Z}_q\langle x, y \rangle^\dagger$ consists of power series $\sum r_{i,j}x^i y^j \in \mathbb{Z}_q[[x, y]]$

$$\exists \delta, \varepsilon \in \mathbb{R}, \varepsilon > 0, \forall (i, j) : \text{ord}_p r_{i,j} \geq \varepsilon(i + j) + \delta.$$

- Coefficients $r_{i,j}$ get smaller linearly in the degree $i + j$

- The ring A^\dagger satisfies $A^\dagger/pA^\dagger = \overline{A}$

- Only depends up to \mathbb{Z}_q-isomorphism on \overline{A}

- Admits a lift of the Frobenius endomorphism F_q, since $q = p^n$ we have $F_q = F_p^n$, suffices to lift $F_p =: \Sigma$
p-th Power Frobenius on A^\dagger

- Conditions on the p-th power Frobenius Σ on A^\dagger are
 \[x^\Sigma \equiv x^p \mod p \quad \text{and} \quad y^\Sigma \equiv y^p \mod p \quad \text{and} \quad f^\Sigma(x^\Sigma, y^\Sigma) = 0 \]

- Fixing $x^\Sigma = x^p$ also fixes y^Σ since $f^\Sigma(x^p, y^\Sigma) = 0$, thus
 \[\left(\frac{\partial f(x, y)}{\partial y} \right)^p \] has to be invertible in A^\dagger.

- Main idea: lift Frobenius on x and y simultaneously such that denominator in the Newton iteration is invertible in A^\dagger.

- Let $Z \in A^\dagger$ such that $x^\Sigma = x^p + \alpha Z$ and $y^\Sigma = y^p + \beta Z$, then
 \[f^\Sigma(x^\Sigma, y^\Sigma) = f^\Sigma(x^p + \alpha Z, y^p + \beta Z) = 0 \quad \text{and} \quad Z \equiv 0 \mod p \]
p-th Power Frobenius on A^\dagger

- Let $G(Z) := f^\Sigma(x^p + \alpha Z, y^p + \beta Z)$, then $Z_{k+1} = Z_k - \frac{G(Z_k)}{G'(Z_k)}$

 \[G'(Z) \equiv \alpha \frac{\partial f^\Sigma}{\partial x} \bigg|_{(x^p,y^p)} + \beta \frac{\partial f^\Sigma}{\partial y} \bigg|_{(x^p,y^p)} + O(Z) \mod p \]

- $G'(0)$ will be invertible in A^\dagger if $G'(0) \equiv 1 \mod p$ and thus

 \[G'(0) \equiv \alpha \left(\frac{\partial f}{\partial x} \right)^p + \beta \left(\frac{\partial f}{\partial y} \right)^p \equiv 1 \mod p \]

- Assume \overline{X} non-singular, then $\frac{\partial \overline{f}}{\partial x}, \frac{\partial \overline{f}}{\partial y}$ and \overline{f} generate unit ideal, so we can compute $\overline{\alpha}, \overline{\beta}, \overline{\gamma} \in \overline{A}$ with

 \[1 = \overline{\alpha} \left(\frac{\partial \overline{f}}{\partial x} \right)^p + \overline{\beta} \left(\frac{\partial \overline{f}}{\partial y} \right)^p + \overline{\gamma} \overline{f} \]
Monsky-Washnitzer Cohomology Groups

- Monsky-Washnitzer = de Rham cohomology of A^\dagger

\[H^1(\overline{A}/\mathbb{Q}_q) := D^1(A^\dagger)/d(A^\dagger) \otimes_{\mathbb{Z}_q} \mathbb{Q}_q \]

- $H^1(\overline{A}/\mathbb{Q}_q)$ only depends on \overline{A}
- Vectorspace over \mathbb{Q}_q of dimension $2g + m - 1$,
 - g is genus of curve
 - m is the number of missing points
Lefschetz Fixed Point Theorem

- Let $F = \Sigma^n$ be a lift of the q-power Frobenius to A^\dagger
- F induces an endomorphism F^* on $H^1(A/\mathbb{Q}_q)$
- Lefschetz fixed point formula: the number of \mathbb{F}_{q^r}-rational points on \bar{X} equals

\[q^r - \text{Tr } (qF^* - 1)^r \mid H^1(\bar{A}/\mathbb{Q}_q) \]

- Note: gives number of points over all extensions!
M-W Cohomology of Punctured Affine Line

- Consider $\overline{C} : xy - 1 = 0$ with $\overline{A} = \mathbb{F}_p[x, 1/x]$, then

$$N_r = \#\overline{C}(\mathbb{F}_p^r) = p^r - 1$$

- Construct de Rham cohomology in characteristic p?
 - $\Omega^1(\overline{A}) := \overline{A} dx / (d \overline{A})$ is infinite dimensional.
 - $x^k dx$ with $k \equiv -1 \pmod{p}$ cannot be integrated.
- First attempt: lift situation to \mathbb{Z}_p and try again?
 - Consider two lifts to \mathbb{Z}_p

$$A_1 = \mathbb{Z}_p[x, 1/x] \text{ and } A_2 = \mathbb{Z}_p[x, 1/(x(1 + px))]$$

- A_1 and A_2 are not isomorphic!
- $H^1_{DR}(A_1/\mathbb{Q}_p) = \langle \frac{dx}{x} \rangle$ and $H^1_{DR}(A_2/\mathbb{Q}_p) = \langle \frac{dx}{x}, \frac{dx}{1+px} \rangle$.
M-W Cohomology of Punctured Affine Line

- Second attempt: use p-adic completion, then
 \[A_1^\infty \cong A_2^\infty \cong \left\{ \sum_{i \in \mathbb{Z}} \alpha_i x^i \in \mathbb{Z}_p[[x, 1/x]] \mid \lim_{i \to \infty} \alpha_i = 0 \right\} \]

- However: $H^1_{DR}(A^\infty / \mathbb{Q}_p)$ is again infinite dimensional!
 - $\sum_i p^i x^{p^i - 1}$ is in A^∞ but integral $\sum_i x^{p^i}$ is not.

- Third attempt: consider the dagger ring or weak completion
 \[A_1^\dagger = \left\{ \sum_{i \in \mathbb{Z}} \alpha_i x^i \in \mathbb{Z}_p[[x, 1/x]] \mid \exists \epsilon \in \mathbb{R}_{>0}, \delta \in \mathbb{R} : v_p(\alpha_i) \geq \epsilon |i| + \delta \right\} \]

- Note: A_1^\dagger is isomorphic to A_2^\dagger, since $1 + px$ invertible in A_1^\dagger.
M-W Cohomology of Punctured Affine Line

- M-W cohomology = de Rham cohomology of $A^\dagger \otimes \mathbb{Q}_p$
- $H^1(\overline{A}/\mathbb{Q}_p) = A^\dagger dx/(dA^\dagger)$ and clearly for $k \neq -1$

\[x^k \, dx = d\left(\frac{x^{k+1}}{k+1} \right) \]

- Conclusion: $H^1(\overline{A}/\mathbb{Q}_p)$ has basis $\frac{dx}{x}$
- Lifting Frobenius F to A^\dagger: infinitely many possibilities

\[F(x) \in x^p + pA^\dagger \]

- Examples: $F_1(x) = x^p$ or $F_2(x) = x^p + p$
M-W Cohomology of Punctured Affine Line

- Action of F_1 on basis $\frac{dx}{x}$ is given by

$$F_1^* \left(\frac{dx}{x} \right) = \frac{d(F_1(x))}{F_1(x)} = \frac{d(x^p)}{x^p} = p \frac{dx}{x}$$

- Action of F_2 on basis $\frac{dx}{x}$ is given by

$$F_2^* \left(\frac{dx}{x} \right) = \frac{d(F_2(x))}{F_2(x)} = \frac{d(x^p + p)}{x^p + p} = \frac{px^{p-1}}{x^p + p} dx = \frac{p}{1 + px^{-p}} \frac{dx}{x}$$

- Power series: $(1 + px^{-p})^{-1} = \sum_{i=0}^{\infty} (-1)^i p^i x^{-ip} \in A^\dagger$

$$F_2^* \left(\frac{dx}{x} \right) = p \frac{dx}{x} + d \left(\sum_{i=1}^{\infty} \frac{(-1)^i p^{i-1}}{i} x^{-ip} \right)$$
M-W Cohomology of Punctured Affine Line

- Action of F_1 and F_2 are equal on $H^1(\overline{A}/\mathbb{Q}_p)!$

$$F^*(\frac{dx}{x}) = p \frac{dx}{x} \Rightarrow F^*^{-1}\left(\frac{dx}{x}\right) = \frac{1}{p} \frac{dx}{x}$$

- Lefschetz Trace formula applied to \overline{C} gives

$$\#\overline{C}(\mathbb{F}_{p^r}) = p^r - \text{Trace}\left((pF^*^{-1})^r|H^1(\overline{C}/\mathbb{Q}_p)\right)$$

- Conclusion:

$$\#\overline{C}(\mathbb{F}_{p^r}) = p^r - 1$$
Kedlaya’s Algorithm $p > 2$

- Let $y^2 - \bar{f}(x) = 0$ hyperelliptic curve \bar{C} of genus g over \mathbb{F}_{p^n}, i.e. $\bar{f}(x)$ of degree $2g + 1$ and squarefree.

- Affine curve \bar{C}' obtained from C by deleting $y = 0$, then coordinate ring $\bar{A} = \mathbb{F}_q[x, y, y^{-1}]/(y^2 - \bar{f}(x))$.

- Lift \bar{C}' to C' over \mathbb{Z}_q by taking any lift $f(x) \in \mathbb{Z}_q[x]$ of $\bar{f}(x)$ and removing $y = 0$ of curve defined by $f = 0$.

- Coordinate ring of C' is $A = \mathbb{Z}_q[x, y, y^{-1}]/(y^2 - f(x))$.

- A^\dagger contains series $\sum_{k=-\infty}^{+\infty} (S_k(x) + T_k(x)y)y^{2k}$ with $\deg S_k, \deg T_k \leq 2g$ and valuation of S_k and T_k grows linearly with $|k|$.

Lifting Frobenius to Dagger Ring A^\dagger

Lift Σ to $\Sigma : A^\dagger \longrightarrow A^\dagger$ as

$$x^{\Sigma} := x^p \quad \text{and} \quad \Sigma(y) \text{ satisfies } (y^{\Sigma})^2 = f(x)^{\Sigma}. \quad \text{(1)}$$

Formula for y^{Σ} as element of A^\dagger:

$$y^{\Sigma} = (f(x)^{\Sigma})^{1/2} \quad \text{(2)}$$
$$= (f(x)^{\Sigma} - f(x)^p + f(x)^p)^{1/2} \quad \text{(3)}$$
$$= f(x)^{p/2}(1 + \frac{f(x)^{\Sigma} - f(x)^p}{f(x)^p})^{1/2} \quad \text{(4)}$$
$$= y^p \sum_{k=0}^{\infty} \binom{1/2}{k} \frac{(f(x)^{\Sigma} - f(x)^p)^k}{y^{2pk}} \quad \text{(5)}$$
Lifting Frobenius to Dagger Ring A^\dagger: Practice

- Actually need $(y^\Sigma)^{-1}$, can be computed as $(y^\Sigma)^{-1} = y^{-p} R$
- R is a root of the equation $G(Z) = SZ^2 - 1$ with
\[
S = (1 + ((f(x)^\Sigma) - f(x)^p)/y^{2p})
\]
- Newton iteration to compute R is given by
\[
Z \leftarrow \frac{Z(3 - SZ^2)}{2}
\]
starting from $Z \equiv 1 \pmod{p}$.
- In each step, the truncated power series should be reduced modulo f
Kedlaya’s Algorithm: Differentials

- Since $y^2 - f(x) = 0$, we have $dy = \frac{f'(x)dx}{2y}$ and thus

 $$D^1(A^+) = A^+ \frac{dx}{y}$$

- Any differential form can thus be written as

 $$\sum_{k=-\infty}^{+\infty} \frac{h_k(x)}{y^k} dx$$

 with $\deg h_k < \deg f$
Kedlaya’s Algorithm: Reduction of Differentials

- $h(x)/y^s dx$ with $h(x) \in \mathbb{Q}_q[x]$ and $s \in \mathbb{N}$ can be reduced
- Write $h(x) = U(x)f(x) + V(x)f'(x)$, then
 \[
 \frac{h(x)}{y^s} dx = \frac{U(x)f(x) + V(x)f'(x)}{y^s} dx = \frac{U(x)}{y^{s-2}} dx + \frac{V(x)f'(x)}{y^s} dx
 \]
- Consider exact differential
 \[
 d\left(\frac{V(x)}{y^{s-2}}\right) = \frac{V'(x)}{y^{s-2}} dx - \frac{(s-2)V(x)}{y^{s-1}} dy \equiv 0
 \]
- Finally we obtain
 \[
 \frac{h(x)}{y^s} dx \equiv \left(U(x) + \frac{2V'(x)}{s-2}\right) \frac{dx}{y^{s-2}}
 \]
- Reduced to the case $s = 2$ or $s = 1$
Kedlaya’s Algorithm: Reduction of Differentials

- $h(x)y^s dx$ with $s \in \mathbb{N}$ even is exact since $h(x)f(x)^{s/2} dx$ is
- $h(x)y^s dx$ with $s \in \mathbb{N}$ for s odd is $\frac{h(x)f(x)^{(s+1)/2}}{y} dx$
- Differential $h(x)/y dx$ with $\deg h = n \geq 2g$ can be reduced by subtracting multiples of $d(x^{i-2g} y)$ for $i = n, \ldots, 2g$
Kedlaya’s Algorithm: Basis for $H^1(\overline{A}/\mathbb{Q}_q)$

- Have shown $H^1(\overline{A}/\mathbb{Q}_q) = H^1(\overline{A}/\mathbb{Q}_q)^+ \oplus H^1(\overline{A}/\mathbb{Q}_q)^-$
 - $H^1(\overline{A}/\mathbb{Q}_q)^+$ generated by $x^i dx/y^2$ for $i = 0, \ldots, 2g$
 - $H^1(\overline{A}/\mathbb{Q}_q)^-$ generated by $x^i dx/y$ for $i = 0, \ldots, 2g - 1$
- The invariant part corresponds to the $2g + 1$ removed points with y-coordinate zero.
- The characteristic polynomial of F^* on $H^1(\overline{A}/\mathbb{Q}_q)^-$ equals

$$\chi(t) := t^{2g} P(1/t) \text{ with } Z(\overline{C}; t) = \frac{P(t)}{(1 - t)(1 - qt)}.$$
Computing Action of Frobenius on $H^1(\bar{A}/K)^-$

The action of Σ^* on a differential form x^kdx/y is given by

$$\Sigma^*(x^kdx/y) \equiv px^{pk+p-1}dx/\Sigma(y).$$

Using the equation of the curve and subtracting suitable exact differentials we can express $\Sigma^*(x^kdx/y^l)$ again on $H^1(\bar{A}/K)^-.$

This gives matrix M which is an approximation of the action of Σ^* on $H^1(\bar{A}/K)^-.$

The polynomial $\chi(t) := t^{2g}P(1/t)$ can then be approximated by the characteristic polynomial of $MM^\Sigma \cdots M^{\Sigma^{n-1}}.$
Kedlaya’s Algorithm: Example

1. Let \(\overline{C} \) be hyperelliptic curve over \(\mathbb{F}_3 \) defined by
 \[
y^2 = x^5 + x^4 + 2x^3 + 2x + 2.
 \]

2. The Frobenius on \(y^{-1} \) modulo \(3^6 \) is given by \(y^{-p} \cdot R \)
 \[
 R \equiv 1 + (-363x^4 + 96x^3 + 144x^2 - 6x + 207)\tau + (-123x^4 - 153x^3 - 21x^2 + 351x + 210)\tau^2
 + (339x^4 - 228x^3 - 60x^2 - 204x + 186)\tau^3 + (-81x^4 + 54x^3 - 243x^2 - 243x + 27)\tau^4
 + (-54x^4 - 162x^3 - 54x^2 - 54x + 162)\tau^5 + (351x^4 + 189x^3 + 189x^2 + 189x + 351)\tau^6
 + (-243x^4 + 243x^3 - 108x^2 - 270x + 27)\tau^7 + (-135x^3 + 54x^2 + 81x - 108)\tau^8
 + (216x^4 + 108x^3 - 297x^3 + 351x - 162)\tau^9 + (-243x^4 - 162x^3 - 324x^2 + 243x)\tau^{10}
 + (81x^4 - 243x^3 - 162x^2 + 162x - 81)\tau^{11} + (-162x^4 + 162x^3 + 324x^2 - 324x + 324)\tau^{12}
 \]

 with \(\tau = y^{-2} \).
Kedlaya’s Algorithm: Example

The matrix M is given by

$$M = \begin{bmatrix}
 27 & 39 & 30 & 108 \\
 129 & 36 & 27 & 126 \\
 204 & 186 & 12 & 138 \\
 46/3 & 76/3 & 41/3 & 169
\end{bmatrix}$$

$\chi(T) \equiv T^4 + 80T^3 + T^2 + 78T + 9 \pmod{3^4}$, so

$$Z(\tilde{C}/\mathbb{F}_q; T) = \frac{9T^4 - 3T^3 + T^2 - T + 1}{(1 - T)(1 - 3T)}$$
Kedlaya’s Algorithm: Final Words

- Complexity for fixed p is $O(g^{4+\varepsilon} n^{3+\varepsilon})$
- Dependence on p is $O(p(\log p)^k)$, so fully exponential
- Only practical for moderately small p, e.g. $p \leq 500$
- Characteristic 2 version is more subtle, need special lift of equation of the curve
- Extension to very general class of non-degenerate curves