Canonical Lift Methods

Fré Vercauteren

Katholieke Universiteit Leuven

29-30 August 2005
Satoh’s Algorithm

AGM Algorithm

History
Frobenius Endomorphism

Let E be an elliptic curve over a finite field \mathbb{F}_q with $q = p^n$.

Recall the q-th power Frobenius endomorphism

$$F_q : E \to E : (x, y) \mapsto (x^q, y^q)$$

The characteristic polynomial of F_q was of the form

$$\chi(T) = T^2 - \text{Tr}(F_q)T + \text{Deg}(F_q) = T^2 - tT + q = 0$$

and $\#E(\mathbb{F}_q) = \chi(1) = q + 1 - t$
Factorisation of $\chi(T)$ over p-adic’s

- \mathbb{Q}_p is field of p-adic numbers, with valuation ring \mathbb{Z}_p
- Assume that $t \not\equiv 0 \mod p$, then
 \[
 \chi(T) \equiv T^2 - tT \equiv T(T - t) \mod p
 \]
- Conclusion: $\chi(T)$ splits over \mathbb{Z}_p as
 \[
 \chi(T) = (T - \lambda)(T - \frac{q}{\lambda})
 \]
 with λ the unique root such that $\lambda \equiv t \mod p$ (λ is unit)
- Conclusion: $t = \lambda + \frac{q}{\lambda}$, since $|t| \leq 2\sqrt{q}$ only need approximation of λ modulo p^N with $N > n/2 + 2$
How to Compute λ?

- Since $\lambda \in \mathbb{Z}_p$, need to lift the situation to p-adic integers
- Given elliptic curve E over \mathbb{F}_q, can we find \mathcal{E} over \mathbb{Z}_q s.t.
- Reduction of \mathcal{E} modulo p equals E
- \mathcal{E} comes with “lifted Frobenius endomorphism \mathcal{F}_q” with the same characteristic polynomial

$$\chi(F_q; T) = \chi(\mathcal{F}_q; T)$$

- Assume that we could compute \mathcal{E} and \mathcal{F}_q, then how to proceed?
How to Compute λ?

- Let $E : f(x, y) = 0$ over field \mathbb{K}, then there exists an invariant differential

$$\omega = \frac{dx}{\partial f/\partial y}$$

- Morphism $\phi : E_1 \to E_2$ induces by pullback a map $\Omega_2 \to \Omega_1$

$$\phi^*(gdh) = \phi^*(g)d\phi^*(h) = (g \circ \phi)d(h \circ \phi)$$

- Invariant: since $\tau_P^*\omega = \omega$

- Linearization: ϕ, ψ 2 isgonies from $E_1 \to E_2$ then

$$(\phi \oplus \psi)^*\omega = \phi^*\omega + \psi^*\omega$$

- Pullback of regular differential by isogeny again regular, so

$$\phi^*\omega = c\omega, \ c \in \mathbb{K}$$
How to Compute λ?

- Since \mathcal{F}_q satisfies $T^2 - tT + q = 0$, the constant $\mathcal{F}_q^*\omega = c\omega$ satisfies

$$c^2 - tc + q = 0$$

- Conclusion: c is either λ or q/λ but which one?
- Use that $\mathcal{F}_q \equiv F_q \mod p$ and clearly $F_q^*\omega \equiv 0 \mod p$, so

$$c = \frac{q}{\lambda}$$

- Efficiency: would need extra n precision to recover λ and trace t
- Solution: consider the dual $\hat{\mathcal{F}}_q$ of \mathcal{F}_q, then $\hat{\mathcal{F}}_q^*\omega = \lambda\omega$
The canonical lift \mathcal{E} of an ordinary elliptic curve E over \mathbb{F}_q is an elliptic curve over \mathbb{Q}_q which satisfies:

- the reduction of \mathcal{E} modulo p equals E,
- the ring homomorphism $\text{End}(\mathcal{E}) \to \text{End}(E)$ induced by reduction modulo p is an isomorphism.
- Deuring showed that the canonical lift \mathcal{E} always exists and is unique up to isomorphism.
Canonical Lift: Alternative Characterisation

- \mathcal{E} is the canonical lift of E.

- Reduction modulo p induces an isomorphism $\text{End}(\mathcal{E}) \simeq \text{End}(E)$.

- The q-th power Frobenius $F_q \in \text{End}(E)$ lifts to an endomorphism $\mathcal{F}_q \in \text{End}(\mathcal{E})$.

- The p-th power Frobenius isogeny $F_p : E \rightarrow E^\sigma$ lifts to an isogeny $\mathcal{F}_p : \mathcal{E} \rightarrow \mathcal{E}^\Sigma$, with Σ the Frobenius substitution.

Conclusion: last property implies that the j-invariant of \mathcal{E} has to satisfy

$$\Phi_p(j(\mathcal{E}), \Sigma(j(\mathcal{E}))) = 0$$
Canonical Lift: Lubin-Serre-Tate

- Let E be an ordinary elliptic curve over \mathbb{F}_q with j-invariant $j(E) \in \mathbb{F}_q \setminus \mathbb{F}_{p^2}$.
- Then the system of equations

$$\Phi_p(X, \Sigma(X)) = 0 \quad \text{and} \quad X \equiv j(E) \pmod{p},$$

has a unique solution $J \in \mathbb{Z}_q$, which is the j-invariant of the canonical lift \mathcal{E} of E (defined up to isomorphism).

- Example: $\Phi_2(X, Y) = X^3 + Y^3 - X^2Y^2 + 1488(XY^2 + X^2Y) - 162000(X^2 + Y^2) + 40773375XY + 8748000000(X + Y) - 157464000000000$

- When $j(E) \in \mathbb{F}_{p^2}$, then isomorphic to curve over \mathbb{F}_p or \mathbb{F}_{p^2}, so can use simple enumeration.
Canonical Lift: Satoh’s Algorithm

- To compute $j(\mathcal{E}) \mod p^N$, Satoh considered E together with all its conjugates $E_i = E^{\sigma_i}$ with $0 \leq i < n$.
- Let $F_{p,i}$ denote the p-th power Frobenius isogeny, then

 $E_0 \xrightarrow{F_{p,0}} E_1 \xrightarrow{F_{p,1}} \cdots \xrightarrow{F_{p,n-2}} E_{n-1} \xrightarrow{F_{p,n-1}} E_0$.

- Satoh lifts cycle $(E_0, E_1, \ldots, E_{n-1})$ simultaneously.
Canonical Lift: Weierstrass Model

\[p = 2 \ : \ y^2 + xy = x^3 + a_6, \quad j(E) = 1/a_6 \]
\[p = 3 \ : \ y^2 = x^3 + x^2 + a_6, \quad j(E) = -1/a_6 \]
\[p > 5 \ : \ y^2 = x^3 + 3ax + 2a, \quad j(E) = 1728a/(1 + a) \]

Given \(j \)-invariant \(j(\mathcal{E}) \) of the canonical lift of \(E \), a Weierstrass model for \(\mathcal{E} \) is given by

\[p = 2 \ : \ y^2 + xy = x^3 + 36\alpha x + \alpha, \quad \alpha = 1/(1728 - j(\mathcal{E})) \]
\[p = 3 \ : \ y^2 = x^3 + x^2/4 + 36\alpha x + \alpha, \quad \alpha = 1/(1728 - j(\mathcal{E})) \]
\[p > 5 \ : \ y^2 = x^3 + 3\alpha x + 2\alpha, \quad \alpha = j(\mathcal{E})/(1728 - j(\mathcal{E})) \]
How to compute λ?

- From before: the dual \hat{F}_q of F_q, then $\hat{F}_q^*\omega = \lambda \omega$

- The diagram implies

$$\hat{F}_q = \hat{F}_{p,0} \circ \hat{F}_{p,1} \circ \cdots \circ \hat{F}_{p,n-1}$$

- Consider $\omega_i = \omega^{\Sigma^i}$ for $0 \leq i < n$ and let c_i be defined by

$$\hat{F}_{p,i}^*(\omega_i) = c_i \omega_{i+1},$$

- Conclusion: $\lambda = \prod_{0 \leq i < d} c_i$

- Commutative squares are conjugates, so $c_i = \Sigma^i(c_0)$ and

$$\lambda = \text{No}_{\mathbb{Q}_q/\mathbb{Q}_p}(c_0)$$
How to compute c_0?

- Know equations of \mathcal{E}_0 and \mathcal{E}_1, assume we know $\text{Ker}\hat{\mathcal{F}}_{p,0}$
- Vélu’s formulas: compute an equation of $\mathcal{E}_1/\text{Ker}(\hat{\mathcal{F}}_{p,0})$ and isogeny ν_0
- Since $\text{Ker}(\nu_0) = \text{Ker}(\hat{\mathcal{F}}_{p,0})$, there exists an isomorphism $\lambda_0 : \mathcal{E}_1/\text{Ker}(\hat{\mathcal{F}}_{p,0}) \to \mathcal{E}_0$ that makes diagram commutative
How to compute c_0?

- Vélu’s construction: chooses holomorphic differential such that action of ν_0 is trivial
- Conclusion: it is sufficient to compute the action of λ_0 on ω_0
Computing $\text{Ker}(\hat{F}_{p,0})$?

- Note that $\text{Ker}(\hat{F}_{p,0})$ is a subgroup of order p of $E_1[p]$.
- Let $H_0(x)$ be $H_0(x) = \prod_{P \in (\text{Ker}(\hat{F}_{p,0}) \setminus \{O\})} / \pm (x - x(P))$
- $H_0(x)$ divides the p-division polynomial $\psi_{p,1}(x)$ of E_1
- Lemma: $H_0(x) \in \mathbb{Z}_q[x]$ is the unique monic polynomial that divides $\psi_{p,1}(x)$ and such that $H_0(x)$ is squarefree modulo p of degree $(p - 1)/2$
- Need to modify Hensel since reduction mod p of $H_0(x)$ not coprime with $\psi_{p,1}$
How to compute c_0?

- For $p > 3$, \mathcal{E}_1 has equation $y^2 = x^3 + a_1 x + b_1$
- Vélu: $\mathcal{E}_1 / \text{Ker}(\hat{\mathcal{F}}_{p,0})$ has equation $y^2 = x^3 + \alpha_1 x + \beta_1$

\[
\alpha_1 = (6 - 5p) a_1 - 30(h_{0,1}^2 - 2h_{0,2}) \\
\beta_1 = (15 - 14p) b_1 - 70(-h_{0,1}^3 + 3h_{0,1} h_{0,2} - 3h_{0,3}) + 42a_1 h_{0,1}
\]

where $h_{0,k}$ is coefficient of $x^{(p-1)/2-k}$ in $H_0(x)$

- λ_0 to \mathcal{E}_0: $y^2 = x^3 + a_0 x + b_0$ is $\lambda_0 : (x, y) \to (u_0^2 x, u_0^3 y)$ with

\[
u_0^2 = \frac{\alpha_1}{\beta_1} \frac{b_0}{a_0}
\]

- Let $\omega_0 = dx/y$ then $\lambda_0^*(\omega_0) = u_0^{-1} \omega_1,K$ with $\omega_1,K = dx/y$

- Conclusion: $c_0 = u_0^{-1}$
Satoh’s Algorithm: Example

- Let $p = 5$, $d = 7$, $\mathbb{F}_{p^d} \simeq \mathbb{F}_p(\theta)$ with $\theta^7 + 3\theta + 3 = 0$
- Elliptic curve $E : y^2 = x^3 + x + a_6$

 $$a_6 = 4\theta^6 + 3\theta^5 + 3\theta^4 + 3\theta^3 + 3\theta^2 + 3.$$

- The j-invariant of canonical lift with precision 6 then is
 $$J_0 \equiv 6949T^6 + 6806T^5 + 14297T^4 + 2260T^3 + 13542T^2 + 13130T + 15215,$$
 with $\mathbb{Z}_q \simeq \mathbb{Z}_p[T]/(G(T))$ and $G(T) = T^7 + 3T + 3$.

- Values for a, b of $E : y^2 = x^3 + ax + b$

 \begin{align*}
a &\equiv 6981T^6 + 8408T^5 + 1033T^4 + 8867T^3 + 15614T^2 + 3514T + 675 \\
b &\equiv 4654T^6 + 397T^5 + 5897T^4 + 703T^3 + 5201T^2 + 7551T + 450
\end{align*}
Satoh’s Algorithm: Example

- Polynomial H describing the kernel of \mathcal{F}_p

$$H(x) \equiv x^2 + (1395T^6 + 7906T^5 + 3737T^4 + 9221T^3 + 9207T^2 + 5403T + 7401)x$$
$$+ 6090T^6 + 206T^5 + 5259T^4 + 7576T^3 + 3863T^2 + 8903T + 7926$$

- Recover α and β as

$$\alpha \equiv 11086T^6 + 2618T^5 + 6983T^4 + 13192T^3 + 15324T^2 + 13544T + 10550$$
$$\beta \equiv 4940T^6 + 3060T^5 + 14966T^4 + 6589T^3 + 7934T^2 + 6060T + 12470$$

- Norm of $(\alpha b) / (\beta a)$ and taking the square root,

$$\text{Tr}(F_q) = 433 \quad \text{and} \quad |E(\mathbb{F}_{p^d})| = 77693$$
AGM Algorithm

INPUT: Elliptic curve $E : y^2 + xy = x^3 + c$ over \mathbb{F}_{2^d}
OUTPUT: Trace of Frobenius modulo 2^{N-1}

1. $a \leftarrow 1$ and $b \leftarrow (1 + 8c) \mod 2^4$ \hspace{1cm} c arbitrary lift of \overline{c}
2. For $i = 5$ To N Do
 2.1 $(a, b) \leftarrow ((a + b)/2, \sqrt{ab}) \mod 2^i$
3. $a_0 \leftarrow a$
4. For $i = 0$ To $d - 1$ Do
 4.1 $(a, b) \leftarrow ((a + b)/2, \sqrt{ab}) \mod 2^N$
5. $t \equiv \frac{a_0}{a} \mod 2^{N-1}$
Let $a_0, b_0 \in \mathbb{R}$ with $a_0 \geq b_0 > 0$, then the AGM iteration for $k \in \mathbb{N}$ is defined as

$$(a_{k+1}, b_{k+1}) = \left(\frac{a_k + b_k}{2}, \sqrt{a_k b_k}\right)$$

Lemma: $\lim a_k = \lim b_k = AGM(a_0, b_0)$

For $a_k/b_k = 1 + \varepsilon_k$ with $\varepsilon_k < 1$, convergence is quadratic

$$\frac{a_{k+1}}{b_{k+1}} = \frac{a_k + b_k}{2\sqrt{a_k b_k}} = \frac{2 + \varepsilon_k}{2\sqrt{1 + \varepsilon_k}}$$

$$= 1 + \frac{\varepsilon_k^2}{8} - \frac{\varepsilon_k^3}{8} + O(\varepsilon_k^4).$$
AGM over \mathbb{Z}_q

- For $c \in 1 + 8\mathbb{Z}_q$, denote by \sqrt{c} the unique element $e \in 1 + 4\mathbb{Z}_q$ with $e^2 = c$.
- Given $a, b \in \mathbb{Z}_q$ with $a/b \in 1 + 8\mathbb{Z}_q$, then $a' = (a + b)/2$ and $b' = b\sqrt{a/b}$ also belong to \mathbb{Z}_q and $a'/b' \in 1 + 8\mathbb{Z}_q$.
- However: the 2-adic AGM sequence will converge if and only if $a/b \in 1 + 16\mathbb{Z}_q$.
- For $a/b \in 1 + 8\mathbb{Z}_q$ the AGM sequence will not converge!
- But: AGM sequence $(a_k, b_k)_{k=0}^{\infty}$ can be used to compute the number of points on an ordinary elliptic curve
Elliptic Curve AGM

- Let \(a, b \in 1 + 4\mathbb{Z}_q\) with \(a/b \in 1 + 8\mathbb{Z}_q\) and \(E_{a,b}\)

 \[E_{a,b} : y^2 = x(x - a^2)(x - b^2).\]

- Let \(a' = (a + b)/2, b' = \sqrt{ab}\), then \(E_{a,b}\) and \(E_{a',b'}\) are 2-isogenous. The isogeny is given by

 \[\psi : E_{a,b} \rightarrow E_{a',b'}\]

 \[(x, y) \mapsto \left(\frac{(x + ab)^2}{4x}, y \frac{(x - ab)(x + ab)}{8x^2}\right),\]

- Kernel of \(\psi\) is \((0, 0)\).

- The action of \(\psi\) on the invariant differential is

 \[\psi^* \left(\frac{dx}{y}\right) = 2\frac{dx}{y}.\]
Elliptic Curve AGM: Convergence

- AGM sequence \((a_k, b_k)_{k=0}^\infty\) does not converge at all . . .
- Theorem: The sequence of elliptic curves \(E_{a_k,b_k}\) converges linearly towards the canonical lift \(\mathcal{E}\) of \(E\)

\[
j(E_{a_k,b_k}) \equiv \sum^k (j(\mathcal{E})) \pmod{2^{k+1}}.
\]

- Proof: based on fact that the curves \(E_{a_k,b_k}\) and \(E_{a_{k+1},b_{k+1}}\) are 2-isogenous, so

\[
\Phi_2 (j(E_{a_k,b_k}), j(E_{a_{k+1},b_{k+1}})) = 0
\]
Elliptic Curve AGM: Relation with Frobenius

- Assume we have $a, b \in 1 + 4\mathbb{Z}_q$ with $a/b \in 1 + 8\mathbb{Z}_q$ with
 $$j(\mathcal{E}_{a,b}) = j(\mathcal{E})$$

- Let $(a', b') = ((a + b)/2, \sqrt{ab})$, $\psi : \mathcal{E}_{a,b} \to \mathcal{E}_{a',b'}$ the AGM isogeny and $F_2 : \mathcal{E}_{a,b} \to \mathcal{E}_{\Sigma(a),\Sigma(b)}$ the lift of the 2-nd power Frobenius, then we have the following diagram:

- Can show that $\text{Ker}(F_2) = \text{Ker}(\psi)$, so exists an isomorphism
 $$\lambda : \mathcal{E}_{a',b'} \to \mathcal{E}_{\Sigma(a),\Sigma(b)}$$
Elliptic Curve AGM: Relation with Frobenius

Since $E_{a,b}$ is isomorphic to the canonical lift E of E,

$$\text{Tr}(F_{2,n-1} \circ \cdots \circ F_{2,0}) = \text{Tr}(F_q) = \text{Tr}(F_q).$$

Diagram: $F_{2,n-1} \circ \cdots \circ F_{2,0} = \lambda_n \circ \psi_{n-1} \circ \cdots \circ \psi_0$

ψ_k acts on invariant differential ω as multiplication by 2

λ_n as multiplication by $\pm a_n/a_0$, so

$$F_q^*(\omega) = \pm q \frac{a_n}{a_0} (\omega).$$
History of p-adic Point Counting

<table>
<thead>
<tr>
<th>Elliptic Curves over \mathbb{F}_{p^n}</th>
<th>p</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satoh</td>
<td>$p \geq 5$</td>
<td>$O(n^{3+\varepsilon})$</td>
<td>$O(n^3)$</td>
</tr>
<tr>
<td>Skjernaa</td>
<td>$p = 2$</td>
<td>$O(n^{3+\varepsilon})$</td>
<td>$O(n^3)$</td>
</tr>
<tr>
<td>Fouquet-Gaudry-Harley</td>
<td>$p = 2, 3$</td>
<td>$O(n^{3+\varepsilon})$</td>
<td>$O(n^3)$</td>
</tr>
<tr>
<td>Vercauteren</td>
<td>all p</td>
<td>$O(n^{3+\varepsilon})$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>Mestre (AGM)</td>
<td>$p = 2$</td>
<td>$O(n^{3+\varepsilon})$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>Carls</td>
<td>all p, $p = 3$</td>
<td>$O(n^{3+\varepsilon})$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>Kohel</td>
<td>$p \leq 11$</td>
<td>$O(n^{3+\varepsilon})$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>Satoh-Skjernaa-Taguchi</td>
<td>all p</td>
<td>$O(n^{2+1/2+\varepsilon})$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>Kim et. al</td>
<td>all p GNB</td>
<td>$O(n^{2+1/2+\varepsilon})$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>Gaudry</td>
<td>$p = 2$</td>
<td>$O(n^{2+1/2+\varepsilon})$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>Lercier-Lubicz</td>
<td>all p GNB</td>
<td>$O(n^{2+\varepsilon})$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>Harley</td>
<td>all p</td>
<td>$O(n^{2+\varepsilon})$</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>