Computing Zeta Functions of Non-degenerate Curves

W. Castryck, J. Denef and F. Vercauteren

Katholieke Universiteit Leuven

31 May 2005
Non-degenerate Curves

Lifting Frobenius

Reduction Algorithm
Non-degenerate Curves (1)

- Let $q = p^n$ with p prime and let k be either \mathbb{F}_q or \mathbb{Q}_q
- Let C be the affine curve $f(x, y) = 0$ with $f(x, y) \in k[x, y]$
- Write $f(x, y) = \sum_{(i,j) \in S} f_{i,j} x^i y^j$ with $f_{i,j} \neq 0$ and $S \subset \mathbb{Z}^2$
- S is called the support of f, convex hull of S is the Newton polygon $\Gamma(f)$ of f

Definition

$f(x, y)$ is called non-degenerate w.r.t. its Newton polygon Γ if for all faces σ of Γ (including Γ) and $f_\sigma = \sum_{(i,j) \in \sigma} f_{i,j} x^i y^j$

$$f_\sigma, \quad \frac{\partial f_\sigma}{\partial x}, \quad \text{and} \quad \frac{\partial f_\sigma}{\partial y}$$

have no common zero in $\mathbb{T} = (\mathbb{A} \setminus \{0\})^2$ over \overline{k}
Non-degenerate Curves (2)
Toric Varieties

- Let Co be a cone in \mathbb{R}^2
- $k[Co]$ is k-algebra generated by $x^i y^j$ with $(i, j) \in Co$
- Denote by X_{Co} the affine toric k-variety $\text{Spec}(k[Co])$

Example

- Let $Co = \langle (1, 0), (0, 1) \rangle$, then $X_{Co} = \mathbb{A}^2$
- Let $Co = \langle (1, 0), (-1, 0), (0, 1) \rangle$, then

 $$k[Co] = k[x, y, x^{-1}] \quad \text{and} \quad X_{Co} \cong \mathbb{A}^1 \times (\mathbb{A}^1 \setminus \{0\})$$

- Let $Co = \langle (1, 0), (0, 1), (-1, 0), (0, -1) \rangle$, then

 $$k[Co] = k[x, y, x^{-1}, y^{-1}] \quad \text{and} \quad X_{Co} = \text{Spec}(k[Co]) = \mathbb{T}$$
Toric Resolution

- Construct toric compactification X_Γ of \mathbb{T} associated with Newton polygon Γ
- Let σ be an edge of Γ and let $Co_\sigma = \langle x - p \mid x \in \Gamma, p \in \sigma \rangle$ be a half-plane
- Define U_σ to be the toric variety $X_{Co_\sigma} \simeq \mathbb{A}^1 \times (\mathbb{A}^1 \setminus \{0\})$
- X_Γ is covered by U_σ for σ an edge of Γ
- U_{σ_1} and U_{σ_2} glued together along \mathbb{T}

Lemma

$X_\Gamma \setminus \mathbb{T} = \bigcup_{i=1}^{r} L_i$ with $L_i = X_{Lin(\sigma_i)} \simeq \mathbb{A}^1$ and $Lin(\sigma_i) = \langle v_i \rangle$

with v_i vector parallel to edge σ_i
Toric Resolution

- Let C be the closure of $\{(x, y) \in \mathbb{T} \mid f(x, y) = 0\}$ in X_Γ
- C is complete, non-singular curve
- Genus of C is number of integral points in interior of Γ
- C intersects each L_i transversally for $i = 1, \ldots, r$
- $|L_i \cap C| = (\# \text{ lattice points on } \sigma_i) - 1$
- Let e_i be vector with integral coefficients and $\perp \sigma_i$, then

$$\text{Div}_C(x^iy^j) = \sum_{k=1,\ldots,r} (i, j) \cdot e_k(L_k \cap C)$$
Lifting Curve

- Let $\overline{C}: \overline{f}(x, y) = 0$ with $\overline{f} \in \overline{F}_q[x, y]$ and assume that \overline{f} is non-degenerate w.r.t. $\Gamma(\overline{f})$
- Assume that \overline{f} is monic in y of degree d and commode
- Take arbitrary lift $f(x, y) \in \mathbb{Z}_q[x, y]$ with $\Gamma(f) = \Gamma(\overline{f})$
- $f(x, y)$ is again non-degenerate w.r.t. the Newton polygon Γ
- Genus $g(\overline{C}) = g(C)$ and one-to-one correspondence between points at infinity
- Let A^{\dagger} be the dagger ring of $A := \mathbb{Z}_q[x, y]/(C)$.
- Elements of A^{\dagger} can be represented as

$$
\sum_{l=0}^{d-1} \sum_{k=0}^{+\infty} a_{k,l} x^k y^l
$$

and the valuation of $a_{k,l} \in \mathbb{Z}_q$ grows linearly with k
A Lift of the Frobenius Endomorphism

- The necessary conditions on the Frobenius Σ on A^\dagger are
 \[\Sigma(x) \equiv x^p \mod p \quad \Sigma(y) \equiv y^p \mod p \quad C^\Sigma(\Sigma(x), \Sigma(y)) = 0 \]

- Main idea: lift Frobenius on x and y simultaneously such that denominator in the Newton iteration is invertible in A^\dagger

- Let $Z \in A^\dagger$ such that $\Sigma(x) = x^p + \alpha Z$ and $\Sigma(y) = y^p + \beta Z$,
 \[C^\Sigma(\Sigma(x), \Sigma(y)) = C^\Sigma(x^p + \alpha Z, y^p + \beta Z) = 0 \]
 and
 \[Z \equiv 0 \mod p \]
A Lift of the Frobenius Endomorphism

Let \(G(Z) := C^\Sigma(x^p + \alpha Z, y^p + \beta Z) \), then

\[
G'(Z) \equiv \alpha \frac{\partial C^\Sigma}{\partial x} \bigg|_{(x^p, y^p)} + \beta \frac{\partial C^\Sigma}{\partial y} \bigg|_{(x^p, y^p)} + O(Z) \mod p
\]

\(G'(Z) \) will be invertible in \(A^\dagger \) if \(G'(Z) \equiv 1 \mod p \) and thus

\[
G'(Z) \equiv \alpha \left(\frac{\partial C}{\partial x} \right)^p + \beta \left(\frac{\partial C}{\partial y} \right)^p \equiv 1 \mod p
\]

Since \(\overline{C} \) non-singular, \(\frac{\partial \overline{C}}{\partial x}, \frac{\partial \overline{C}}{\partial y} \) and \(\overline{C} \) generate unit ideal and using Buchberger’s algorithm we compute \(\overline{\alpha}, \overline{\beta}, \overline{\gamma} \in \overline{A} \) with

\[
1 = \overline{\alpha} \left(\frac{\partial \overline{C}}{\partial x} \right)^p + \overline{\beta} \left(\frac{\partial \overline{C}}{\partial y} \right)^p + \overline{\gamma} \overline{C}
\]
A Lift of the Frobenius Endomorphism

- Convergence rate of $Z = \sum_{l=0}^{d-1} \sum_{k=0}^{+\infty} a_{k, l} x^k y^l$ is given by

$$\text{ord}_p a_{i,j} \geq \frac{i + (d_C - d + 1)j}{6p(d + 1)(d_C - d + 1)}$$

with d_C the total degree of C

- Proof requires linear effective Nullstellensatz: let $f_0, f_1, f_2 \in k[x, y]$ with support in Γ and f_0, f_1, f_2 have no common solution in X_Γ, then $\exists h_0, h_1, h_2$ with support in 2Γ

$$1 = h_0 f_0 + h_1 f_1 + h_2 f_2$$
Two Divisors and Riemann-Roch

Definition
Let D_C be the divisor on C

$$D_C := - \sum_{i=1,\ldots,r} N_i(L_i \cap C), \quad \text{with } N_i = p_i \cdot e_i$$

with p_i any vertex on edge σ_i and let $W_C := \sum_{i=1,\ldots,r} (L_i \cap C)$

Theorem
The Riemann-Roch space

$$\mathcal{L}(mD_C) = \{ h \in k(C) \mid \text{Div}(h) \geq -mD_C \}$$

is generated by $x^i y^j$ with $(i, j) \in m\Gamma$
From differentials to polynomials . . .

Consider the map \(\Lambda : k(C) \to \Omega(C) : \)

\[
\Lambda(h) = h(x, y) \frac{dx}{xyf_y}
\]

with \(f_y = \frac{\partial f}{\partial y} \)

An exact differential \(\omega = dg \) is the image of

\[
dg = g_x dx + g_y dy = (f_y g_x - f_x g_y) \frac{dx}{f_y} = xy(f_y \frac{\partial}{\partial x} - f_x \frac{\partial}{\partial y})(g) \frac{dx}{xyf_y}
\]

Define \(D \) operator as

\[
D(g) = xy(f_y \frac{\partial}{\partial x} - f_x \frac{\partial}{\partial y})(g)
\]

then \(dg = \Lambda(D(g)) \)
The Reduction Algorithm

- Every $\omega \in H^1_{DR}(C)$ can be written as $\wedge(h)$ with $h \in \mathbb{Q}_q[x, y]$
- Computing modulo exact differential forms then is equivalent to computing modulo D
- For subset $E \subset \mathbb{R}^2$ define $L_E \mathbb{Q}_q$-vectorspace of all Laurent polynomials with support contained in E
- Let $S_m := \langle x^i y^j \mid 0 \leq i \leq m, 0 \leq j < d \rangle \subset \mathbb{Q}_q[x, y]$
- Define $\kappa \in \mathbb{N}_0$ smallest integer such that $L_{2\Gamma} \mod f \subset S_\kappa$
The Reduction Algorithm

Theorem

For all $m \in \mathbb{N}_0$, *we have*

$$S_m^{(1)} \subset D(S_{m-1+k}^{(0)}) + L^{(1)}(2D_C)$$

where for a set of polynomials $L \subset \mathbb{Q}_q[x, y]$ *we define*

$$L^{(0)} = L \cap \mathbb{Z}_q[x, y]$$

$$L^{(1)} = \{ h \in L^{(0)} \mid \forall P \in C \setminus \mathbb{A}^2, \forall i < 0 : i \mid_{\mathbb{Z}_q} \operatorname{Coeff}(\frac{t}{dt} \wedge(h), i) \}$$

with t *such that* (p, t) *generates local ring at* P *of* \mathcal{C} *over* \mathbb{Z}_q
The Reduction Algorithm

- Given \(h(x, y) \in S_M \) for some \(M \in \mathbb{N}_0 \)
- Let \(\Delta = \max \{-\text{ord}_{P_i}(x^My^{(d-1)})\} \) for all places \(P_i \) at \(\infty \)
- Set \(\epsilon = \left\lceil \log_p(\Delta) \right\rceil \), then \(p^\epsilon h(x, y) \in S^{(1)}_M \)
- Compute \(g \in D(S^{(0)}_{M-1+\kappa}) \) such that \(h - d(g) \in \mathcal{L}^{(1)}(2D_C) \)
- Choose as basis for \(H^1_{DR}(C) \) a \(\mathbb{Z}_q \)-module basis of

\[
\mathcal{L}^{(0)}(2D_C)/(D(D_C)) \cap \mathbb{Z}_q[x, y]
\]
Future Work . . .

- Algorithm also works for non-monic and non-commode polynomials, really computes on torus
- Make precise complexity estimate, currently think $O(g^6 n^3)$, but could be $O(g^5 n^3)$
- Does algorithm generalise to higher dimensions?
- Abandon current lift of Frobenius and try $\Sigma(x) = x^p$ again
- Why require isomorphism of $H_{DR}^1(C)$ and $H_{MW}^1(\overline{C})$?